Subregular Affine Kazhdan-Lusztig Polynomials in Type D

Harry Kim

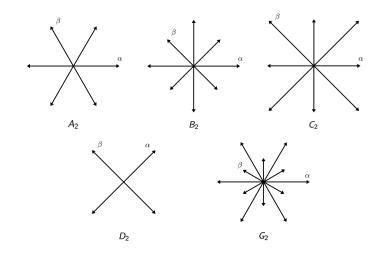
PRIMES October Conference

October 13, 2024

Mentor: Kenta Suzuki

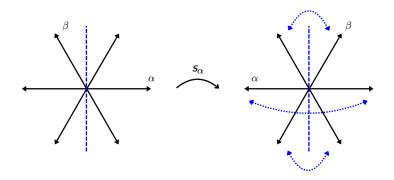
Root Systems

• Root systems are certain symmetric arrangement of vectors.

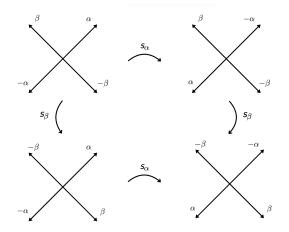


Weyl Groups

- A Weyl group is a group of symmetries of root systems generated by reflections across hyperplanes orthogonal to the roots.
- Let s_{α} denote the reflection across the hyperplane orthogonal to the root α .

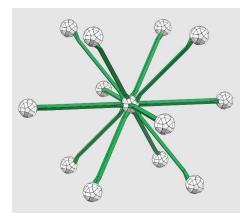


Weyl Group of type D_2



 D_2 has order 4, consisting of the four symmetries above.

Root System of type D_3



- D_3 has 12 roots, and the Weyl group has order 24.
- The root system can be seen as connecting the center of a cube with the midpoint of the cube's edges.

Root System of type D_n

• The root system of D_n can be expressed as

$$\Phi = \{\pm \epsilon_i \pm \epsilon_j : 1 \le i < j \le n\},\$$

where ϵ_i are the unit vectors of the vector space.

• The simple roots of D_n are

$$\{\epsilon_1 - \epsilon_2, \epsilon_2 - \epsilon_3, \ldots, \epsilon_{n-1} - \epsilon_n, \epsilon_{n-1} + \epsilon_n\}.$$

because every root of D_n is a \mathbb{Z} -linear combination of roots from this set.

Weyl Group of type D_n

• The reflection across the hyperplane orthogonal to the simple root $\epsilon_i - \epsilon_{i+1}$ sends

$$(a_1, a_2, \ldots, a_n) \mapsto (a_1, \ldots, a_{i+1}, a_i, \ldots, a_n),$$

while the simple root $\epsilon_{n-1} + \epsilon_n$ sends

$$(a_1, a_2, \ldots, a_n) \mapsto (a_1, a_2, \ldots, -a_n, -a_{n-1}).$$

 More generally, ε_i - ε_j swaps a_i and a_j, and ε_i + ε_j swaps a_i with -a_j and a_j with -a_i.

Signed permutations

- Other than the description through reflections, Weyl groups of type D_n can be expressed through even signed permutations of {1,..., n}.
- A signed permutation looks like

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & \overline{1} & \overline{3} \end{pmatrix}$$

They compose like:

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & \overline{1} & \overline{3} \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ \overline{1} & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ \overline{2} & \overline{3} & \overline{1} \end{pmatrix}.$$

• A signed permutation is even if the number of bars is even.

Simple Reflections

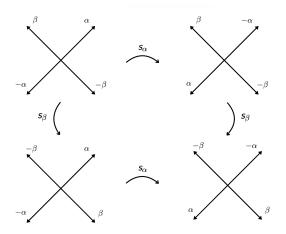
If α is a simple root, s_{α} is called a simple reflection.

Theorem

Let $\{\alpha_1, \ldots, \alpha_n\}$ denote the set of simple roots of Weyl group W. Then the set of simple reflections $\{s_{\alpha_1}, \ldots, s_{\alpha_n}\}$ generates W.

What are the relations between these generators?

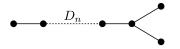
Example: D2



Here, s_{α} and s_{β} are the simple reflections.

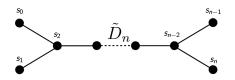
Dynkin Diagrams

This is the Dynkin diagram of Type D_n .



- Each vertex corresponds to a simple root of D_n .
- A pair of simple roots α_i and α_j are <u>not connected</u> by an edge when they are orthogonal to each other. As we saw in type D₂, this means s_is_j = s_js_i.
- Simple roots α_i and α_j are <u>connected</u> by an edge when they have a 120° angle between them. Then, $(s_i s_j)^3 = 1$ because $s_i s_j$ is a 240° rotation.
- This gives you all the relations!

Weyl Group of Type \widetilde{D}_n



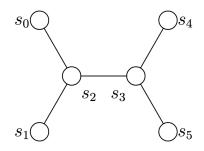
- We can define \widetilde{D}_n with the following Dynkin diagram that has one more simple root.
- The order of the Weyl group is infinite!
- These Weyl groups are called affine Weyl groups.

Subregular Cell

Let c_{subreg} denote the set of all non-identity elements in W with a unique reduced word. Then c_{subreg} is called the subregular cell of W.

Example:

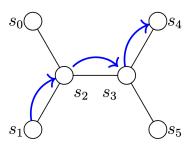
In D_5 , the element s_1s_2 is in the subregular cell because it is unique, while the element $s_1s_2s_1$ is not in the subregular cell because $(s_1s_2)^3 = 1$ so $s_1s_2s_1 = s_2s_1s_2$.



Subregular Cell of type \widetilde{D}_n

Theorem (Vasily Krylov, Kenta Suzuki, 2024)

In Weyl group W of type \widetilde{D}_n , if $w = s_{i_1} \cdots s_{i_n}$ is in the subregular cell, then w defines a path (i_1, \ldots, i_n) on the Dynkin diagram such that each edge only appears once.



Choosing the starting and ending points of a path on the Dynkin diagram of \widetilde{D}_n uniquely determines a subregular element.

Kazhdan-Lusztig Polynomials

- Kazhdan-Lusztig polynomials m^w_v are certain polynomials attached to Weyl groups with connections to representation theory and physics.
- Subregular Kazhdan-Lusztig polynomials are Kazhdan-Lusztig polynomials when *v* is subregular.
- Bezrukavnikov, Kac, and Krylov computed m^w_v when v is subregular and it ends with s₀ of Weyl groups in types A, D, and E.

Theorem (K.)

Explicit formulas for \mathbf{m}_v^w for all v subregular, in types D_4 and D_5 .

Kazhdan-Lusztig polynomials of D_4

Let $\gamma = m_1\alpha_1 + m_2\alpha_2 + m_3\alpha_3 + m_4\alpha_4$ where α_i is the corresponding root to the simple reflection s_i .

Let w_i denote the subregular element defined by the path on the Dynkin diagram starting at s_2 and ending at s_i .

Computing with the matrices, we find the following results:

$$\mathbf{m}_{wq}^{w_{\gamma}} = (\gamma, \gamma) - (\gamma, \alpha_0)$$
$$\mathbf{m}_{w1}^{w_{\gamma}} = (\gamma, \gamma) - (\gamma, \alpha_1)$$
$$\mathbf{m}_{w2}^{w_{\gamma}} = 2(\gamma, \gamma)$$
$$\mathbf{m}_{w3}^{w_{\gamma}} = (\gamma, \gamma) - (\gamma, \alpha_3)$$
$$\mathbf{m}_{w4}^{w_{\gamma}} = (\gamma, \gamma) - (\gamma, \alpha_4)$$

Computations in \widetilde{D}_5

We use the same method for computations in \widetilde{D}_5 to find the following results:

$$\mathbf{m}_{w_0}^{w_{\gamma}} = (\gamma, \gamma) - (\gamma, \alpha_0)$$
$$\mathbf{m}_{w_1}^{w_{\gamma}} = (\gamma, \gamma) - (\gamma, \alpha_1)$$
$$\mathbf{m}_{w_2}^{w_{\gamma}} = 2(\gamma, \gamma)$$
$$\mathbf{m}_{w_3}^{w_{\gamma}} = 2(\gamma, \gamma) - (\gamma, \epsilon_3)$$
$$\mathbf{m}_{w_4}^{w_{\gamma}} = (\gamma, \gamma) - (\gamma, \alpha_4 + \epsilon_3)$$
$$\mathbf{m}_{w_4}^{w_{\gamma}} = (\gamma, \gamma) - (\gamma, \alpha_5 + \epsilon_3)$$

Acknowledgements

- I would like to thank my mentor, Kenta, for proposing this project and for guidance during the preparation of this project.
- I would also like to thank the MIT PRIMES program for arranging such an engaging research experience.

References

- J. E. Humphreys, *Reflection Groups and Coxeter Groups*, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990.
- V. Krylov and K. Suzuki, Affine Kazhdan-Lusztig Polynomials on the Subregular Cell in Non Simply-Laced Lie Algebras: With an Application to Character Formulae, *arXiv preprint arXiv:2401.06605*, 2024.
- R. Bezrukavnikov, V. Kac, and V. Krylov, Subregular Nilpotent Orbits and Explicit Character Formulas for Modules over Affine Lie Algebras, *arXiv preprint arXiv:2209.08865*, 2023.
- T. Xu, On the Subregular *J*-Rings of Coxeter Systems, *Algebr. Represent. Theory*, vol. 22, no. 6, pp. 1479–1512, 2019.