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Background

Root Systems

@ Root systems are certain symmetric arrangement of vectors.
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Background

Weyl Groups

@ A Weyl group is a group of symmetries of root systems generated by
reflections across hyperplanes orthogonal to the roots.

@ Let s, denote the reflection across the hyperplane orthogonal to the
root a.
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Weyl Group of type D,

B o s
Sa
)
—a -B @ —f

D> has order 4, consisting of the four symmetries above.
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Root System of type Ds

@ Ds has 12 roots, and the Weyl group has order 24.

@ The root system can be seen as connecting the center of a cube with
the midpoint of the cube’s edges.
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Root System of type D,

@ The root system of D,, can be expressed as
O ={xe+¢:1<i<j<n},
where ¢€; are the unit vectors of the vector space.
@ The simple roots of D, are
{e1 —€2,60 —€3,...,€6n—1 — €n,€n—1 + €n}.

because every root of D, is a Z-linear combination of roots from this
set.
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Weyl Group of type D,

@ The reflection across the hyperplane orthogonal to the simple root
€; — €j+1 sends

(a1,a2,...,an) — (a1,...,3i+1,3i,. .-, an),
while the simple root €,_1 + ¢, sends
(a1,a2,...,an) — (a1,a2,...,—an, —an-1).

@ More generally, €; — ¢ swaps a; and a;, and €; + ¢ swaps a; with —a;
and aj with —a;.
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Background

Signed permutations

@ Other than the description through reflections, Weyl groups of type

D,, can be expressed through even signed permutations of {1,..., n}.

@ A signed permutation looks like

123
213
They compose like:

(213)°(132)=(

@ A signed permutation is even if the number of bars is even.

231
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Background

Simple Reflections

If o« is a simple root, s, is called a simple reflection.

Let {a1,...,an} denote the set of simple roots of Weyl group W. Then
the set of simple reflections {sa,, ..., Sa,} generates W.

What are the relations between these generators?
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Example: D2
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Here, s, and sz are the simple reflections.
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Dynkin Diagrams

This is the Dynkin diagram of Type D,.

@ Each vertex corresponds to a simple root of D,,.

@ A pair of simple roots «; and «; are not connected by an edge when
they are orthogonal to each other. As we saw in type D5, this means
S5iSj = 5jS;.

@ Simple roots «; and «; are connected by an edge when they have a
120° angle between them. Then, (s;s;)® = 1 because s;s; is a 240°
rotation.

@ This gives you all the relations!
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Background

Weyl Group of Type D,

S2 D,n Sn—2

@ We can define 5,, with the following Dynkin diagram that has one
more simple root.

@ The order of the Weyl group is infinite!

@ These Weyl groups are called affine Weyl groups.
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Subregular Cell

Let Csubreg denote the set of all non-identity elements in W with a unique
reduced word. Then cypreg is called the subregular cell of W.

Example:

In Ds, the element s;s, is in the subregular cell because it is unique, while
the element s1sps1 is not in the subregular cell because (s15,)% = 1 so
515251 = S$25152.

S0 S4

So 83

S1 S5
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Subregular Cell

Subregular Cell of type D,

Theorem (Vasily Krylov, Kenta Suzuki, 2024)

In Weyl group W of type 5,,, if w=sj ---s; isin the subregular cell,
then w defines a path (i1,...,I,) on the Dynkin diagram such that each
edge only appears once.

S0 S4

S22 S3

S1 S5

Choosing the starting and ending points of a path on the Dynkin diagram
of D, uniquely determines a subregular element.
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Subregular Cell

Kazhdan-Lusztig Polynomials

@ Kazhdan-Lusztig polynomials m}/ are certain polynomials attached to
Weyl groups with connections to representation theory and physics.

@ Subregular Kazhdan-Lusztig polynomials are Kazhdan-Lusztig
polynomials when v is subregular.

@ Bezrukavnikov, Kac, and Krylov computed my’ when v is subregular
and it ends with sy of Weyl groups in types A, D, and E.

Explicit formulas for m\/ for all v subregular, in types 54 and 55.
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Kazhdan-Lusztig polynomials of D,

Let v = may + meap + m3as + myay where «; is the corresponding root
to the simple reflection s;.

Let w; denote the subregular element defined by the path on the Dynkin
diagram starting at s, and ending at s;.

Computing with the matrices, we find the following results:

mug = (7,7) — (7. o)
my, = (v,7) — (v, 1)
my, = 2(7,7)

my, = (v,7) — (7, a3)
mu; = (7,7) — (7, )
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Subregular Cell

Computations in 55

We use the same method for computations in 55 to find the following
results:

mug = (v,7) — (7. o)
my, = (v,7) — (v, 1)
My, = 2(7,7)

my; = 2(7,7) — (7, €3)
my, = (7,7) — (7, a4 + €3)
My, = (7,7) = (7, a5 + €3)
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Subregular Cell
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Subregular Cell
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